q-fermionic operators and quantum exceptional algebras

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 24 L179
(http://iopscience.iop.org/0305-4470/24/4/004)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 14:07

Please note that terms and conditions apply.

LETTER TO THE EDITOR

q-fermionic operators and quantum exceptional algebras

L. Frappat \dagger, P Sorba \dagger and A Sciarrino \ddagger
\dagger Laboratoire d'Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, BP 110, F-74941 Annecy-le-Vieux Cedex, France
\ddagger Università di Napoli Federico 1I, Dipartimento di Scienze Fisiche and INFN, Sezione di Napoli I-80125 Napoli, Italy

Received 29 November 1990

Abstract

Using a q-deformation of the usual Clifford algebra, one constructs a realization of the quantum exceptional algebras E_{6}, E_{7}, E_{8} and F_{4} in terms of q-fermionic operators.

The study of quantum integrable systems has led to new algebraic structures, called quantum groups [1], which are deformations of the enveloping algebra of a Lie algebra, such that one recovers the Lie algebra under consideration in the limit $q \rightarrow 1$, where q is the deformation parameter. A particular realization of the infinite series $\operatorname{SU}(n)_{q}$, $\mathrm{SO}(n)_{q}$ and $\mathrm{Sp}(2 n)_{q}$ has been obtained by using quantum deformation of the usual Weyl and Clifford algebras [2,3]. An explicit matrix realization of the $\left(\mathrm{G}_{2}\right)_{q}$ algebra has already been given in [4]. In this letter, we would like to concentrate on the other exceptional cases and give a realization of the quantum algebras E_{6}, E_{7}, E_{8} and F_{4} in terms of operators satisfying q-deformed Clifford algebras.

Let us recall the definition of a quantum enveloping algebra $U_{q}(G)$ associated with a simple Lie algebra G of rank $n[1,3]$. Mathematically, the quantum enveloping algebra $U_{q}(G)$ is a Hopf algebra with unit 1 and generators $E_{i}^{+}, E_{i}^{-}, H_{i}(1 \leqslant i \leqslant n)$ defined through the commutation relations in the Chevalley basis

$$
\begin{align*}
& {\left[H_{i}, H_{j}\right]=0} \\
& {\left[H_{i}, E_{j}^{+}\right]=a_{i j} E_{j}^{+}} \tag{1}\\
& {\left[H_{i}, E_{j}^{-}\right]=-a_{i j} E_{j}^{-}} \\
& {\left[E_{i}^{+}, E_{j}^{-}\right]=\delta_{i j} \frac{q^{2 d_{i} H_{i}}-q^{-2 d_{i} H_{i}}}{q^{2 d_{i}}-q^{-2 d_{i}}}}
\end{align*}
$$

and the quantum Serre-Chevalley relations (for $i \neq j$)

$$
\begin{align*}
& \sum_{0 \leqslant n \leqslant 1-a_{i j}}(-1)^{n}\left[\begin{array}{c}
1-a_{i j} \\
n
\end{array}\right]_{q^{2 u_{i}}}\left(E_{i}^{+}\right)^{1-a_{i j}-n} E_{j}^{+}\left(E_{i}^{+}\right)^{n}=0 \tag{2a}\\
& \sum_{0 \leqslant n<1-a_{i j}}(-1)^{n}\left[\begin{array}{c}
1-a_{i j} \\
n
\end{array}\right]_{q^{2 d_{i}}}\left(E_{i}^{-}\right)^{1-a_{i j}-n} E_{j}^{-}\left(E_{i}^{-}\right)^{n}=0 \tag{2b}
\end{align*}
$$

where $\left(a_{i j}\right)(1 \leqslant(i, j) \leqslant n)$ is the Cartan matrix of the Lie algebra G, and d_{i} are non-zero integers, with greatest common divisor equal to one, such that $d_{i} a_{i j}=d_{j} a_{j i}$. Notice that if the Cartan matrix is symmetric, all the d_{i} 's are equal to one.

The q-binomial coefficients $\left[\begin{array}{c}m \\ n\end{array}\right]_{q}$ are defined by

$$
\begin{gather*}
{\left[\begin{array}{l}
m \\
n
\end{array}\right]_{q}=\frac{[m]_{q}!}{[m-n]_{q}![n]_{q}!} \quad \text { with } \quad[m]_{q}!=[m]_{q} \ldots[1]_{q} \quad \text { and }} \\
{[m]_{q}=\frac{q_{m}-q^{-m}}{q-q^{-1}} .} \tag{3}
\end{gather*}
$$

One needs also to introduce a comultiplication Δ, a co-unit ε and an antipode S such that

$$
\begin{align*}
& \Delta\left(H_{i}\right)=1 \otimes H_{i}+H_{i} \otimes 1 \\
& \Delta\left(E_{i}^{ \pm}\right)=E_{i}^{ \pm} \otimes q^{-H_{i}}+q^{H_{i}} \otimes E_{i}^{ \pm} \\
& \varepsilon\left(E_{i}^{ \pm}\right)=\varepsilon\left(H_{i}\right)=0 \quad \text { and } \quad \tag{4}\\
& S\left(E_{i}^{ \pm}\right)=-q^{-H_{i}} E_{i}^{ \pm} q^{H_{i}} \quad \text { and }
\end{aligned} \quad \begin{aligned}
& \\
& S(1)=1 \\
& \left.H_{i}\right)=-H_{i} .
\end{align*}
$$

The q-deformation $\mathrm{Cliff}_{q}(n)$ of the Clifford algebra of dimension n with generators a_{i}^{-}, a_{i}^{+}and $N_{i}(1 \leqslant i \leqslant n)$ is defined by \dagger

$$
\begin{align*}
& a_{i}^{-} a_{j}^{+}+q^{2 \delta_{i j}} a_{j}^{+} a_{i}^{-}=\delta_{i j} q^{2 N_{i}} \\
& a_{i}^{-} a_{j}^{+}+q^{-2 \delta_{i j}} a_{j}^{+} a_{i}^{-}=\delta_{i j} q^{-2 N_{i}} \\
& \left(a_{i}^{-}\right)^{2}=\left(a_{i}^{+}\right)^{2}=0 \tag{5}\\
& {\left[N_{i}, a_{j}^{ \pm}\right]= \pm \delta_{i j} a_{j}^{ \pm} .}
\end{align*}
$$

Notice that the q-analogue of the Clifford algebra is invariant in the change $q \leftrightarrow q^{-1}$. This allows us to compute the products $a_{i}^{-} a_{i}^{+}$and $a_{i}^{+} a_{i}^{-}$in terms of N_{i}. One finds

$$
\begin{align*}
& a_{i}^{+} a_{i}^{-}=\frac{q^{2 N_{i}}-q^{-2 N_{i}}}{q^{2}-q^{-2}} \tag{6a}\\
& a_{i}^{-} a_{i}^{+}=-\frac{q^{2 N_{i}-2}-q^{-2 N_{i}+2}}{q^{2}-q^{-2}} . \tag{6b}
\end{align*}
$$

We recall that there exist the following homomorphism between $\mathrm{U}_{4}\left(D_{n}\right)$ and $\mathrm{Cliff}_{q}(n)$ (see [3]):
$E_{i}^{+} \rightarrow a_{i+1}^{+} a_{i}^{-}$
$E_{i}^{-} \rightarrow a_{i}^{+} a_{i+1}^{-}$
$H_{i} \rightarrow N_{i+1}-N_{i} \quad(1 \leqslant i \leqslant n-1)$
$E_{n}^{+} \rightarrow a_{n}^{+} a_{n-1}^{+} \quad E_{n}^{-} \rightarrow a_{n-1}^{-} a_{n}^{-}$

$$
\begin{equation*}
H_{n} \rightarrow N_{n-1}+N_{n} . \tag{7}
\end{equation*}
$$

\dagger There exists another definition of the q-analogue of the Clifford algebra given by (see [3]):

$$
\begin{aligned}
& a_{i}^{-} a_{j}^{+}+q^{2 \delta_{n}} a_{j}^{+} a_{i}^{-}=\delta_{i j} \omega^{2} \\
& a_{i}^{-} a_{i}^{+}+q^{-2 \delta_{n} a_{i}^{+} a_{i}^{-}=\delta_{i j} \omega^{-2}} \\
& \left(a_{i}^{-}\right)^{2}=\left(a_{i}^{+}\right)^{2}=0 \\
& \omega_{i} a_{j}^{-} \omega_{i}^{-1}=q^{\delta_{\| \prime}} a_{j}^{-} \quad \text { and } \quad \omega_{i} a_{i}^{-} \omega_{i}^{-1}=q^{-\delta_{11}} a_{i}^{+} \\
& \omega_{i} \omega_{i}^{-1}=\omega_{1}^{-1} \omega_{i}=1 .
\end{aligned}
$$

Although this definition is more general than ours (that one can recover by $\omega_{1}=e^{-h N_{1}}$ with $q=e^{\prime \prime}$), the definition equation (5) leads to the limit $q \rightarrow 1$ (or $h \rightarrow 0$) in a more transparent way.

To obtain a realization of the quantum exceptional algebras in terms of q-deformed fermionic operators, let us introduce two sets of fermionic operators, denoted respectively by $\left(a_{i}^{-}, a_{i}^{+}, N_{i}\right)$ and ($b_{i}^{-}, b_{i}^{+}, M_{i}$) with $i=1-4$. The a-operators and the b-operators are not independent and their mutual action can be computed by

$$
\begin{align*}
& a_{i}^{+} a_{j}^{+}=(-1)^{j-i-1} b_{k}^{-} b_{m}^{-} \\
& a_{i}^{+} a_{j}^{-}=b_{i}^{+} b_{j}^{-} \\
& M_{i}=\frac{1}{2}\left(N_{i}-\sum_{k \neq i} N_{k}\right) . \tag{8}
\end{align*}
$$

Then, one has

$$
\begin{equation*}
M_{i}-M_{j}=N_{i}-N_{j} \quad \text { and } \quad M_{i}+M_{j}=-\left(N_{k}+N_{m}\right) \tag{9}
\end{equation*}
$$

In equations (8) and (9), the set of indices (i, j, k, m) forms a permutation of ($1,2,3,4$) with $i<j$ and $k<m$ (for example, one has $a_{1}^{+} a_{2}^{+}=b_{3}^{-} b_{4}^{-}$). Moreover, we require (for $i \neq \boldsymbol{j}$)

$$
\begin{equation*}
\left[b_{i}^{+}, a_{j}^{-}\right]=\left[b_{i}^{+}, a_{i}^{+}\right]=0 \quad \text { and } \quad\left[b_{i}^{+},\left[b_{i}^{+}, a_{j}^{+}\right]\right]=0 \tag{10}
\end{equation*}
$$

We also introduce a new copy of a-operators and b-operators labelled by $i=5-8$, which satisfy between them relations analogous to (5) and (8). We do not need to specify other relations between these operators in the following (in particular the operators labelled by $i=1-4$ are independent of the operators labelled by $i=5-8$). The construction is based on the construction of the Lie exceptional algebras in terms of fermionic operators given in [5]; for more detail on the construction in the classical case, we invite the reader to refer to this paper.

The symmetric Cartan matrix of E_{8} is given by (see [6])

$$
A=\left(\begin{array}{rrrrrrrr}
2 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \tag{11}\\
0 & 2 & 0 & -1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 2 & -1 & 0 & 0 & 0 & 0 \\
0 & -1 & -1 & 2 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 2
\end{array}\right)
$$

A realization of the generators of E_{8} in the Chevalley basis in terms of bilinear creation and annihilation operators is given by

$$
\begin{array}{llll}
E_{1}^{+} \rightarrow b_{1}^{+} b_{8}^{+} & E_{2}^{+} \rightarrow a_{1}^{+} a_{2}^{+} & E_{3}^{+} \rightarrow a_{2}^{+} a_{1}^{-} & E_{4}^{+} \rightarrow a_{3}^{+} a_{2}^{-} \\
E_{5}^{+} \rightarrow a_{4}^{+} a_{3}^{-} & E_{6}^{+} \rightarrow a_{5}^{+} a_{4}^{-} & E_{7}^{+} \rightarrow a_{6}^{+} a_{5}^{-} & E_{8}^{+} \rightarrow a_{7}^{+} a_{6}^{-} \tag{12a}
\end{array}
$$

and

$$
\begin{equation*}
H_{1} \rightarrow M_{1}+M_{8} \quad H_{2} \rightarrow N_{1}+N_{2} \quad H_{i} \rightarrow N_{i-1}-N_{i-2} \quad(3 \leqslant i \leqslant 8) . \tag{12b}
\end{equation*}
$$

It is easy to verify that all the relations, (1) and (2), defining the universal enveloping algebra $\mathrm{U}_{q}\left(E_{8}\right)$ associated to matrix (11) are satisfied. In order to check equations (1)
and (2), it is enough to study them for the first line of the Cartan matrix since the remaining equations correspond to the Cartan matrix of D_{7} (see [3]):
$a_{12}=0$:

$$
\begin{align*}
& \sum_{n=0}^{1}(-1)^{n}\left[\begin{array}{l}
1 \\
n
\end{array}\right]_{q^{2}}\left(E_{1}^{+}\right)^{1-n} E_{2}^{+}\left(E_{1}^{+}\right)^{n} \\
&=\left[E_{1}^{+}, E_{2}^{+}\right] \approx\left[b_{1}^{+} b_{8}^{+}, a_{1}^{+} a_{2}^{+}\right] \approx\left[b_{1}^{+} b_{8}^{+}, b_{3}^{-} b_{4}^{-}\right]=0 . \tag{13a}
\end{align*}
$$

The same arguments hold for $a_{1 i}$ with $i=4-8$.
$a_{13}=-1$:

$$
\begin{align*}
& \sum_{n=0}^{1}(-1)^{n}\left[\begin{array}{l}
2 \\
n
\end{array}\right]_{q^{2}}\left(E_{1}^{+}\right)^{1-n} E_{3}^{+}\left(E_{1}^{+}\right)^{n} \\
&=\left[E_{1}^{+},\left[E_{1}^{+}, E_{3}^{+}\right]_{q^{-2}}\right]_{q^{2}} \approx\left[b_{1}^{+} b_{8}^{+},\left[b_{1}^{+} b_{8}^{+}, a_{1}^{+} a_{2}^{+}\right]_{q^{-2}}\right]_{q^{2}} \\
& \approx\left[b_{1}^{+} b_{8}^{+},\left[b_{1}^{+} b_{8}^{+}, b_{3}^{-} b_{4}^{-}\right]_{q^{-2}}\right]_{q^{2}}=0 \tag{13b}
\end{align*}
$$

$a_{16}=0:$
$\sum_{n=0}^{1}(-1)^{n}\left[\begin{array}{l}1 \\ n\end{array}\right]_{q^{2}}\left(E_{1}^{+}\right)^{1-n} E_{6}^{+}\left(E_{1}^{+}\right)^{n}=\left[E_{1}^{+}, E_{6}^{+}\right] \approx\left[b_{1}^{+} b_{8}^{+}, a_{5}^{+} a_{4}^{-}\right]=0$.
The symmetric Cartan matrix of E_{7} is given by deleting the last row and the last column of the Cartan matrix (11) of E_{8}. To obtain a realization of E_{7} in terms bilinear creation and annihilation operators, one considers the maximal regular embedding $E_{8} \supset E_{7}$. The realization for E_{7} is immediately obtained by

$$
\begin{array}{llll}
E_{1}^{+} \rightarrow b_{1}^{+} b_{8}^{+} & E_{2}^{+} \rightarrow a_{1}^{+} a_{2}^{+} & E_{3}^{+} \rightarrow a_{2}^{+} a_{1}^{-} & E_{4}^{+} \rightarrow a_{3}^{+} a_{2}^{-} \tag{14a}\\
E_{5}^{+} \rightarrow a_{4}^{+} a_{3}^{-} & E_{6}^{+} \rightarrow a_{5}^{+} a_{4}^{-} & E_{7}^{+} \rightarrow a_{6}^{+} a_{5}^{-} &
\end{array}
$$

and

$$
\begin{equation*}
H_{1} \rightarrow M_{1}+M_{8} \quad H_{2} \rightarrow N_{1}+N_{2} \quad H_{i} \rightarrow N_{i-1}-N_{i-2} \quad(3 \leqslant i \leqslant 7) . \tag{14b}
\end{equation*}
$$

In the same way, the symmetric Cartan matrix of E_{6} is obtained by deleting the last row and the last column of that of E_{7}. Again, in order to obtain a realization of E_{6} in terms bilinear in creation and annihilation operators, one considers the maximal regular embedding $E_{7} \supset E_{6}$. Therefore, one gets

$$
\begin{array}{llll}
E_{1}^{+} \rightarrow b_{1}^{+} b_{8}^{+} & E_{2}^{+} \rightarrow a_{1}^{+} a_{2}^{+} & E_{3}^{+} \rightarrow a_{2}^{+} a_{1}^{-} & E_{4}^{+} \rightarrow a_{3}^{+} a_{2}^{-} \tag{15a}\\
E_{5}^{+} \rightarrow a_{4}^{+} a_{3}^{-} & E_{6}^{+} \rightarrow a_{5}^{+} a_{4}^{-} &
\end{array}
$$

and

$$
\begin{equation*}
H_{1} \rightarrow M_{1}+M_{8} \quad H_{2} \rightarrow N_{1}+N_{2} \quad H_{i} \rightarrow N_{i-1}-N_{i-2} \quad(3 \leqslant i \leqslant 6) \tag{15b}
\end{equation*}
$$

The Cartan matrix of F_{4} is given by (see [6])

$$
\begin{align*}
A= & \left(\begin{array}{rrrr}
2 & -1 & 0 & 0 \\
-1 & 2 & -2 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right) \tag{16}\\
E_{1}^{+} \rightarrow a_{1}^{+} a_{2}^{-} \quad E_{2}^{+} \rightarrow a_{2}^{+} a_{3}^{-} & E_{3}^{+} \rightarrow \sqrt{2} a_{3}^{+} \quad E_{4}^{+} \rightarrow \sqrt{2} b_{4}^{+} \tag{17a}
\end{align*}
$$

and

$$
\begin{equation*}
H_{1} \rightarrow N_{1}-N_{2} \quad H_{2} \rightarrow N_{2}-N_{3} \quad H_{3} \rightarrow 2 N_{3} \quad H_{4} \rightarrow 2 M_{4} . \tag{17b}
\end{equation*}
$$

It is easy to verify that all the relations (1) and (2) defining the universal enveloping algebra $\mathrm{U}_{q}\left(F_{4}\right)$ associated to matrix (16) are satisfied.

Let us check them for the last row of the Cartan matrix since the remaining equations correspond to the Cartan matrix of B_{3} (see [3]):
$a_{41}=0$:
$\sum_{n=0}^{1}(-1)^{n}\left[\begin{array}{l}1 \\ n\end{array}\right]_{q^{2}}\left(E_{4}^{+}\right)^{1-n} E_{1}^{+}\left(E_{4}^{+}\right)^{n}=\left[E_{4}^{+}, E_{1}^{+}\right] \approx\left[b_{4}^{+}, a_{1}^{+} a_{2}^{-}\right]=\left[b_{4}^{+}, b_{1}^{+} b_{2}^{-}\right]=0$
$a_{42}=0$:

$$
\begin{align*}
& \sum_{n=0}^{1}(-1)^{n}\left[\begin{array}{l}
1 \\
n
\end{array}\right]_{q^{2}}\left(E_{4}^{+}\right)^{1-n} E_{2}^{+}\left(E_{4}^{+}\right)^{n}=\left[E_{4}^{+}, E_{2}^{+}\right] \approx\left[b_{4}^{+}, a_{2}^{+} a_{3}^{-}\right]=\left[b_{4}^{+}, b_{2}^{+} b_{3}^{-}\right]=0 \tag{18b}\\
& a_{43}=-1: \\
& \sum_{n=0}^{1}(-1)^{n}\left[\begin{array}{l}
1 \\
n
\end{array}\right]_{q^{2}}\left(E_{4}^{+}\right)^{1-n} E_{3}^{+}\left(E_{4}^{+}\right)^{n} \\
& \quad=\left[E_{4}^{+},\left[E_{4}^{+}, E_{3}^{+}\right]_{q^{-2}}\right]_{q^{2}} \approx\left[b_{4}^{+},\left[b_{4}^{+}, a_{3}^{+}\right]_{q^{-2}}\right]_{q^{2}}=0 \tag{18c}
\end{align*}
$$

We hope that this work will be useful in the construction of the R-matrix for the exceptional algebras. Let us also mention, among the different developments of this work, the realization of the quantum affine algebras using an affinization of the q-deformed Clifford algebra.

References

[1] Takhtajan L A 1988 Quantum groups and integrable models Lecture given in Tániguchi symposium, RIMS, October 1988
[2] Biedenharn L C 1989 J. Phys. A: Math. Gen. 22 L873
Macfarlane A J 1989 J. Phys. A: Math. Gen. 224581
Sun Chang-Pu and Fu Hong-Chen 1989 J. Phys. A: Math. Gen. 22 L983
[3] Hayashi T 1990 Commun. Math. Phys. 127129
[4] Reshetekhin N Yu 1988 Quantified universal enveloping algebras, the Yang-Baxter equation and invariants of links, II LOMI Preprint
[5] Sciarrino A 1989 J. Math. Phys. 30 (8), 1674
[6] Bourbaki N Groupes et algèbres de Lie vol 6 (Paris: Hermann)

